
DEQUALITE: Building Design-based Software Quality Models

Foutse Khomh and Yann-Gaël Guéhéneuc

Ptidej Team, GEODES, DIRO, University of Montreal,

C.P. 6128 succursale Centre Ville Montréal, Quebec, H3C 3J7, Canada

E-mail: {foutsekh,guehene}@iro.umontreal.ca

Abstract

Object-oriented software quality models usually use met-

rics of classes or of relationships between classes to measure

internal attributes of systems. However, the quality of these

systems does not depend on classes solely: It also depends

on the organisation of classes, i.e., their design. We pro-

pose DEQUALITE, a method to build models to measure

the quality of systems taking into account both their inter-

nal attributes and their designs. Our method uses a ma-

chine learning approach and also allows combining different

models to improve the quality prediction. In this paper, we

justify the use of patterns to build quality models, we illus-

trate our method on a set of systems implementing design

patterns and on the quality model QMOOD from Bansiya

et al. We discuss the advantages and limitations of this

method, we then present a validation of a resulting quality

model on a set of systems. We conclude on the advantages

of using patterns to build models and the difficulty of doing

so.

Categories and Subject Descriptors

D.2.11 [Software Engineering]: Software Architec-
tures—Patterns

General Terms

Design, Measurement

Keywords

Patterns, Quality, Machine learning, Models

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission. A preliminary version of this paper was presented in a writers’
workshop at the 15th Conference on Pattern Languages of Programs (PLoP).
PLoP ’08, October 18–20, 2008, Nashville, TN, USA.
Copyright 2008 is held by the author(s). ACM 978-1-60558-151-4.

1. Introduction

In this paper, we present a method, DEQUALITE (De-
sign Enhanced QUALITy Evaluation), to build quality mod-
els to measure the quality of object-oriented systems by
taking into account both their internal attributes and their
designs.

Maintenance cost of systems during the past decades in-
creased to more than 70 % of the overall cost of systems
[21] because of many factors such as changes in software
environment, new users requirements, and quality of sys-
tems [2]. One factor on which we have a real control is the
quality of systems; thus, being able to assess the quality of
systems can significantly help in the prediction of mainte-
nance effort.

Quality models link software artifacts with quality char-
acteristics to predict system quality. Many quality models
exist in the literature but none of them takes into account
the systems designs during their evaluations. They focus on
the internal attributes of classes (such as size, filiation and
cohesion) or, at best, of pairs thereof, and disregard their
organization. They thus can hardly distinguish between a
well-structured system and a system with poor design even
though their designs are the first things that software engi-
neers see.

There are many principles and techniques to help design
systems with good quality characteristics; among these,
design patterns are an interesting bridge between inter-
nal attributes of systems, external quality characteristics,
and software designs because they link internal attributes
(concrete implementation of systems) and subjective qual-
ity characteristics (subjective perceptions on systems), such
as reusability [11].

Since their popularisation in the software engineering
community in 1994, design patterns have gained impor-
tance for system design and have been the subject of many
studies on quality. Some authors like Venners claimed that
design patterns improve the quality of systems while others
like Wendorff [24], suggested that their use do not always
result in “good” designs. MacNatt et al. [20] showed that
a tangled implementation of patterns impacts negatively
quality.

In this paper, we present DEQUALITE, a method to
build quality models to measure the quality of object-oriented
systems taking into account both their internal attributes

and their designs, see Figure 1. This method stands on our
previous study of the impact of design patterns on quality
[22] and on the use of a machine learning technique to link
internal attributes and subjective quality characteristics.
We also use a combination technique [4] to build composite
models with greater predictive power.

In addition to this method, we introduce two other con-
tributions:

• we present a quality model PQMOD. This quality
model is composed of a set of rules for the evalua-
tion of quality taking in account design. We discuss
these rules with respect to object-oriented principles
and present the results of their application on a set of
systems including design patterns;

• we reuse a technique to combine PQMOD with a rule-
based quality model from the literature to improve the
predictive power of both models with the expertise of
design patterns contained in PQMOD. We illustrate
this combination on the model QMOOD [1].

Our method uses the Dromey’s approach [9] that in-
volves four steps to build a quality model:

1. Identify a set of high-level quality attributes.

2. Identify and classify the most significant, tangible,
quality-carrying properties of the system.

3. Propose a set of axioms for linking product properties
to quality attributes.

4. Evaluate the model, identify its weaknesses, and ei-
ther refine it or scrap it and start again.

We organized this paper along the steps of the Figure
1. Section 2 presents the first part of the method DE-
QUALITE that is an empirical study of the impact of the
Gamma et al.’s 23 design patterns [11] on ten quality at-
tributes of systems. Section 3 presents PQMOD, an exem-
ple of quality model that takes in account design during
its evaluation. Section 4 presents a technique to improve
quality models. Section 5 presents related work. Section 6
concludes our work.

2. Part 1: Why Design Patterns?

Using design patterns can be viewed as programming
style from an artistic point of view. In fact, if we draw a
parallel with art, and view a system as a painting, design
patterns can be viewed as the style of the painting and the
quality of this style has an impact on the quality of the
painting, regardless of what is shown. For exemple, if we
want to compare a cubist painting, such as “Femme Profile”
by Pablo Picasso (1939), with a realistic picture (as shown
in figure 2), we should consider the style of each picture
because the two faces possess two eyes, one nose, two ears,
and one mouth only with very different organisations.

We think that similarly to art, system quality depends
on its design; that is on the organisation of its constituents,
which is often determined by design patterns. The link be-
tween paintings and systems is shown in Table 1: Painting

relates to a system; eyes, nose, ears, mouth to classes, in-
terfaces, and methods; the organisation of the painting to
the design of the system; the style of the painting to the
patterns; art critics to quality engineers; and, painters to
developers.

Figure 2. A woman’s profile: Realist version
and Cubist

Art Development
Painting System
Organisation Architecture
Eyes, nose, ears, mouth Classes, interfaces, methods, etc.
Style Patterns
Art critics Quality engineers
Painters Developers

Table 1. Parallel between painting and sys-
tems design.

The study of the impact of design patterns on system
quality is necessary to take into account patterns in the
assessment of systems and is similar to the study of the
impact of an artist’s style on her paintings.

We have evaluated the impact of Gamma et al.’s 23 pat-
terns [11] on ten quality attributes and concluded that they
have a quantifiable impact on system quality. We recall here
some results of this study [22].

2.1. Quality Attributes
We chose [22] the following quality attributes, based on

their relevance to patterns.

• Attributes related to design:
− Expandability: The degree to which the design

of a system can be extended.
− Simplicity: The degree to which the design of

a system can be understood easily.
− Reusability: The degree to which a piece of

design can be reused in another design.

• Attributes related to implementation:
− Learnability: The degree to which the code

source of a system is easy to learn.
− Understandability: The degree to which the

code source can be understood easily.

Figure 1. Steps of the method DEQUALITE.

− Modularity: The degree to which the imple-
mentation of the functions of a system are inde-
pendent from one another.

• Attributes related to runtime:
− Generality: The degree to which a system pro-

vides a wide range of functions at runtime.
− Modularity at runtime: The degree to which

the functions of a system are independent from
one another at runtime.

− Scalability: The degree to which the system can
cope with large amount of data and computation
at runtime.

− Robustness: The degree to which a system con-
tinues to function properly under abnormal con-
ditions or circumstances.

Each quality attribute was evaluated using a six-point
Likert scale: A - Very positive, B - Positive, C - Not

significant, D - Negative, E - Very Negative, and F -

Not applicable. The sixth value allowed respondents not
to answer a question if they did not know or were not sure
about the impact of a design pattern on a quality attribute.

For every design pattern in [11] and for every quality
attribute from our set, the respondents were asked to as-
sess the impact of the pattern on the quality of a system
in which the pattern would be used appropriately, as they
would during a technical review [21] or possibly while per-
forming a program comprehension-related activity during
maintenance and evolution.

The questionnaire is available on the Internet at http:

//www.ptidej.net/downloads/.

2.2. Data Collection and Processing
We collected respondents’ evaluations during the pe-

riod of January to April 2007 by posting our questionnaire
on three mailing lists, refactoring, patterns-discussion, and
gang-of-4-patterns.

Among the many answers that we received, we selected
the questionnaires of 20 software engineers with a verifi-
able experience in the use of design patterns in software
development and maintenance.

This number of collected evaluations is larger than in
previous work. Due to the variations between answers,

we felt that the differences between Positive and Very

Positive answers were due to some respondents being less
strict than others and thus, that their Very Positive eval-
uations were not directly relevant. This fact has been con-
firmed in discussions with the respondents. For example,
for Builder and expandability, we had 19% of respondents
considering the pattern Very Positive while 63% consid-
ered it Positive and 18% considered it Neutral. Therefore,
we chose to aggregate answers A and B and answers D and
E: G = A and B, N = C, and B = D and E. Where G stands
for Good, N for Neutral and B for Bad.

Using the previous three-point Likert scale, we computed
the frequencies of the answers on each quality attribute:
G, N, and B and we carried out a Null hypothesis test to
assess the perceived impact of the patterns on the quality
attributes.

Answers F were not considered because they represented
situations where the respondents did not know or did not
want to evaluate the impact.

2.3. Results
Using the results collected from the questionnaires and

presented in details elsewhere [17], we carried out Null hy-
pothesis tests to quantify the impact of the design patterns
on the quality attributes and then confirm or refute the hy-
pothesis that design patterns impact software quality posi-

tively.
The null hypothesis test yields some surprising results

as one can see in [22], the following table summarize the
results for all the 23 design patterns from [11].

3. Part 2: A Quality Model that takes

into account Design Patterns

This second part of the method DEQUALITE involves
five steps among which three consist of preliminaries to the
construction of the model. The other two are the construc-
tion and the validation of the model. First, we have chosen
a set of appropriate quality characteristics in the previous
part. Second, we identify and classify the most significant,
tangible, internal attributes of systems implementing de-
sign patterns. Third, we assess these attributes on sys-

Quality attributes
Design patterns

E
x
p
a
n
d
a
b
il
it
y

S
im

p
li
c
it
y

G
e
n
e
ra

li
ty

M
o
d
u
la

ri
ty

M
o
d
u
la

ri
ty

a
t

ru
n
ti

m
e

L
e
a
rn

a
b
il
it
y

U
n
d
e
rs

ta
n
d
a
b
il
it
y

R
e
u
sa

b
il
it
y

S
c
a
la

b
il
it
y

R
o
b
u
st

n
e
ss

A.Factory G G G G G B G G N N
Builder G G G G G G G N N N
F.Method G G G G G G G G N N
Prototype G G G N G G G G N N
Singleton B G N N N G G N N N
Adapter G G G G G G G G B N
Bridge G B G G G B G B B N
Composite G G G G G G G G G N
Decorator G N G G G G B B B N
Facade G G G G B G G N N N
Flyweight N B B B N B B B G N
Proxy N G G G N G N G B N
Ch.Of.Resp G G G G G G B G N N
Command G G G G G G B B B N
Interpreter G G G G G G G G B N
Iterator G G G G G G G G B N
Mediator G B G G N G G N N N
Memento N G N N N G N G B N
Observer G G G G G G G G N N
State G G G G G G G B N N
Strategy G G G G G G G G N N
T.Method G G G N N G G G N N
Visitor G B G G G B B B B N

Table 2. Evaluation of the impact of design
patterns on the quality of systems (G = Good,
N = Neutral, B = Bad).

tems. Fourth, with the evaluation of the impact of design
patterns on the quality presented in Table 2, we apply ma-
chine learning techniques (JRip and J48) to generate a set
of rules that link internal attributes to quality characteris-
tics while taking into account the impact of design patterns.
Finally, fifth, we carry a validation and a refinement of the
resulting quality model.

3.1 Steps 1, 2, and 3: Preliminaries

Selection of Internal Attributes of Systems. This step
consist of selecting internal attributes of systems that re-
late to the quality characteristics in Subsection 2.1 and that
can be measured. We choose 29 metrics from the literature
[5, 8, 15, 18, 23], among which metrics of coupling, cohe-
sion, size, filiation, complexity, number of methods. . . The
metrics are implemented in the POM framework [13].

Selection of Systems Implementing Design Patterns.
We select a set of systems implementing design patterns.
We call this set BS . It includes: QuickUML 2001, Lexi
v0.1.1, JRefactory v2.6.24, Netbeans v1.0, JUnit v3.7, JHot-
Draw v5.1, MapperXML v1.9.7, Nutch v0.4, PMD v1.8.
Table 3 presents a detailed list of the design patterns con-
tained in these systems and their numbers. We carried
a manual identification of design patterns in the systems,

which results have been stored in an XML database [3, 13],
to obtain a good precision and recall. An automatic detec-
tion would have produced many false positives and dupli-
cations of design patterns occurrences.

Measurement of the Internal Attributes of BS. We
compute the selected metrics on the classes playing roles in
the patterns in the systems from BS .

3.2 Step 4: Construction of Rules

We apply machine learning techniques, JRip and J48
[25], to infer rules linking the internal attributes with the
metric values obtained in Step 3. We select the rules with
higher classification rates. We obtain a quality model named
PQMOD. The next paragraph presents an example of a rule
in PQMOD:

Rule for the Expendability.

NOA <= 2

| AID <= 0.5: Value: N

| AID > 0.5: Value: B

NOA > 2

| NOC <= 0

| | DIT <= 0.83: Value: G

| | DIT > 0.83: Value: B

| NOC > 0: Value: G

The classification rate for this rule is 89.36%. This rule
states that for a good expendability, the average number of
ancestor (NOA) should be > 2 and each class should have
at least on descendent. This rule confirms the deep abstract
hierarchy principle that is a principle of good programming
[19].

3.3 Step 5: Validation of PQMOD

At this step, we performed a double validation. First,
we applied the rules of PQMOD on design patterns imple-
mented in the system PADL [12] and compared the results
with those of the table 2. We obtained the expected results
for the patterns Visitor, Observer, A.Factory and Compos-
ite contained in PADL. Which confirm the accuracy of our
rules at a pattern level. Next, we scaled the rules of PQ-
MOD (the next section present the details of the scaling) to
be able to apply them to a system at whole. We apply the
scaled model on 5 systems and compared the results to a
manual evaluation of the systems by a group of independent
experts.

Scaling of PQMOD. We scale the quality model PQ-
MOD to apply it on whole systems. This step consists in
adapting the rules associated with PQMOD. Indeed, the
rules are built from metric values with a certain minimum
and maximum values depending on BS , these values differ
from the minimum and maximum values of a given system
S . We compute the ratio between minBS and maxBS, on
the one hand, and minS and maxS, on the other hand, to
adapt their scales. Figure 3 illustrates this adaptation. The
metrics values of S are thus on the same scale with those
of BS and we can apply PQMOD on any system S .

Systems List of design patterns Number of occurrences
QuickUML 2001 A.Factory, Builder, Command, Com-

posite, Observer, Singleton
7

Lexi v0.1.1 Builder, Observer, Singleton 5
JRefactory v2.6.24 Adapter, Builder, F.Method, Single-

ton, State, Visitor
26

Netbeans v1.0 A.Factory, Adapter, Command, Iter-
ator, Observer

28

JUnitv3.7 Composite, Decorator, Iterator, Ob-
server, Singleton

8

JHotDraw v5.1 Adapter, Command, composite,
Decorator, F.Method, Observer,
Prototype, Singleton, State, Strat-
egy, T.Method

24

MapperXML v1.9.7 A.Factory, Adapter, Composite, Fa-
cade, F.Method, Observer, Single-
ton, Strategy, T.Method

16

Nutch v0.4 Singleton, Bridge, Command, Me-
mento, T.Method, Adapter, Strat-
egy, Iterator

16

PMD v1.8 Adapter, Bridge, Composite,
F.Method

8

Table 3. Systems from our BS.

Quality attributes Nutch v0.4 Xerces v 1.4.4 Ant v1.7.0 GanttP. v2.0.4 PADL

E
x
p
ec

te
d

P
re

d
ic

te
d

E
x
p
ec

te
d

P
re

d
ic

te
d

E
x
p
ec

te
d

P
re

d
ic

te
d

E
x
p
ec

te
d

P
re

d
ic

te
d

E
x
p
ec

te
d

P
re

d
ic

te
d

Expandability G G G G G G B G G G
Generality N G G G G G B G N G
Modularity G G G G G G N G G G
Modularity at runtime G G N G G N B N N G
Understandability N G N G G N N G N G
Reusability G G N G G G B G N G
Scalability G B G N G N G B B B

Table 4. Results of the application of PQMOD on 5 systems.

Metric n in base systems

min max

Metric n in a system

min max

Metric value

Figure 3. Adapting the rules of PQMOD, ratio
between minimum and maximum metric val-
ues of BS and S.

Analysis of PQMOD Results. Table 4 presents the re-
sults of applying PQMOD on five open source systems. We
observe that PQMOD performs better on systems with a
sizable number of design patterns. Consequently, we con-
clude on the need to complement PQMOD with the ex-
pertise of another quality model from the literature to im-
prove their respective predictive powers. We choose a qual-
ity model that performs well on systems without design
patterns. The quality model PQMOD assesses the qual-

ity of systems by comparing their structure to structures of
design patterns.

4. Part 3: Mixture of Quality Models
The technique of mixture of expertise allows every rule-

based quality models from the literature to be improved by
the expertise of PQMOD and vice-versa. We now present
the third part of our method that reuse a technique of mix-
ture of experts to produce quality model that takes into
account the design of systems through design patterns.

Notations. Let T be a given decision tree, we call V the
domain of the function f : V 7→ C that predicts the value
yi ∈ C of a quality factor y for an observation xi ∈ V. V

is defined by the cartesian product A1 × . . . × Ad, where
Aj is the domain of the jth attribute and d is the number
of attributes. The range C is generally and ordered set
c1, c2, . . . , cq of labels.

Each internal node of T is a test of the type x(j) < αj ,
with j = 1 . . . d, x(j) an attribute of the observation x and
αj a constant belonging to the domain of the attribute x(j).
Each attribute x(j) takes its values into a bounded domain
with Lj and Uj being, respectively, the lower and upper

bounds.
The tree T can be represented by a binary partition S

of a space V ⊂ Rd defined by the cartesian product of the
intervals [Lj , Uj], j = 1 . . . d : V = [L1, U1] × . . . × [Ld, Ud].

The partitioning S is equivalent to subdividing recur-
sively in two sub-spaces, the space V with an hyperplane
hj of equation x(j) = αj . An hyperplane hj is associated to
each internal test node x(j) < αj . The subdividing contin-
ues until every sub-space is composed only of points belong-
ing to the same class. The partitioning S enables us to view
a decision tree as a set of “isothetic” hyperrectangles (that
is with faces parallel to the axes of the attributes). Thus, a
decision tree can be represented by a vector of (hyperrect-
angle, label). An hyperrectangle (also call a d-rectangle) Rk

is defined by the cartesian product of the intervals [lj , uj],
Rk = [l1, u1] × . . . × [ld, ud], with lj and uj being the coor-
dinates of the edges of the d-rectangle, on the axis of the
attribute x(j).

Approach. We adopt a process of model combination and
adaptation based on the three following steps:

1. Decompose the models to be combined into expertise
chunks to ensure the interpretability of the resulting
model.

2. Combine expertises chunks to improve the generalis-
ability of the resulting model.

3. Adapt/calibrate expertise chunks to improve the pre-
dictive power of the resulting model.

To decompose each model into a set of expertise chunks,
we consider, as a criterion of decomposition, the variation
of the predictive power of a model from an area to another
in its input space. To illustrate our mixture of expertise, let
us consider two decision trees predicting the quality char-
acteristics Stability, for exemple. The first model uses two
metrics, NPPM and LCOMB, and the second one uses the
metrics DIT and LCOMB. The decomposition of the first
decision tree into expertise chunks yields the result in Fig-
ure 4.

Figure 4. A two-dimensional example of
decision-tree chunk of expertise(this figure is
from (Bouktif, 2005))

The combinaison of the expertises chunks of the two de-
cision trees is illustrated in Figure 5.

After this combination of expertises chunks, a unique de-
cision tree is obtained by combining the sets of d-rectangles

Figure 5. Combination of chunks of the two
decision trees (from [4])

of all the decision trees. To achieve this, we compare the
predictive power of each d-rectangles for the two decisions
trees and select the d-rectangle with highest power. The
details of this technique can be found in [4].

Application. Applying this technique of mixture of ex-
pertise on the quality models PQMOD presented in Part
2 and QMOOD from Bansiya [1], we obtain the following
result for the rule Expendability:

NOA <= 2

| AID <= 0.5 : Value: N

| AID > 0.5 : Value: B

NOA > 2

| Value: (0.5)* ANA-(0.5)* DCC+

(0.5)* MFA+(0.5)* NOPM

This rule combines the predictive power of the model
PQMOD (that takes into account the design of systems)
and the predictive power of the model QMOOD (that has
been validated in the literature on many systems but that
does not take into account directly the design of systems).
Thus, by combining the quality model PQMOD and rule-
based models from the literature, the method DEQUALITE
enables the construction of quality models that take into
account the design of systems and that perform at least as
good as the models from the literature.

5. Related Work

We present some major work on quality models and show
that none of the existing work attempts to build a quality
model while considering design.

Briand and Wüst [6] present a detailed and extensive
survey of quality models. They classify quality models in
two categories: correlational studies and experiments. Cor-
relational studies use univariate and multivariate analyses,
while experiments use, for examples, analysis of variance
between groups (ANOVA). To the best of our knowledge,
none of the presented quality models attempts to assess
the architectural quality of programs directly. They all use
class-based metrics or metrics on pairs of classes.

Harrison et al. [14] investigate the structure of object-
oriented programs to relate modifiability and understand-
ability with levels of inheritance. Modifiability and under-

standability cover only partially quality characteristics re-
lated to maintenance. Levels of inheritance are but one
architectural characteristic of programs related to software
maintenance.

Wydaeghe et al. [26] assess the quality characteristics of
the architecture of an OMT editor through the study of 7
design patterns. They conclude on flexibility, modularity,
reusability, and understandability of the architecture and
the patterns. However, they do not link their assessment
with any quality model.

Although some studies have assess some architectural
characteristics of program none have attempted to build a
predictive quality model.

6. Conclusion

In this paper, we have proposed DEQUALITE, a method
to build quality models that allows the measurement of the
quality of object-oriented systems by taking into account
the internal attributes of the system and also its design.
Our method uses a machine learning approach and enables
the combination of models for the improvement of the per-
formance of resulting quality models. Our method is di-
vided in three parts and 8 steps. We have validated the
different steps of our method on many systems. The use of
design patterns in building a quality model brings an extra
level of abstraction to the resulting quality models of the
method DEQUALITE.

The use of design patterns is an important step toward
the construction of quality models able to assess the quality
of a system by taking into account not only its internal at-
tributes and its design, but also more detailed architectural
informations like the density of patterns and–or the pres-
ence of anti-patterns [7] and code smells [10] for exemple.

In our future work, we plan to improve our method with
architectural metrics as suggested by [16]. We are thinking
on using density of patterns, composition of patterns, anti-
patterns and code smells... We also plan to validate our
resulting quality models on a larger number of systems.

Acknowledgments

This work has been partially funded by NSERC and the
VINCI program of University of Montreal. “Femme Pro-
file” by Pablo Picasso is from rogallery.com, we are in con-
tact with its director regarding copyrights.

7. References

[1] J. Bansiya and C. G. Davis. A hierarchical model for
object-oriented design quality assessment. In IEEE
Transactions on Software Engineering, 28:4–17, January
2002.

[2] K. H. Bennett and V. Rajlich. Software maintenance and
evolution: a roadmap. In The Future of Software

Engineering. ACM Press, 2000.
[3] J. Bieman, G. Straw, H. Wang, P. W. Munger, and R. T.

Alexander. Design patterns and change proneness: An
examination of five evolving systems. In Proceedings of the
9th international Software Metrics Symposium, pages 40–49.
IEEE Computer Society Press, September 2003.

[4] S. Bouktif. Amélioration de la prédiction de la qualité du

logiciel par combinaison et adaptation de modèles. PhD
thesis, Université de Montréal, Mai 2005.

[5] L. Briand, P. Devanbu, and W. Melo. An investigation into

coupling measures for C++. In Proceedings of the 19th

International Conference on Software Engineering, pages
412–421. ACM Press, May 1997.

[6] L. C. Briand and J. Wüst. Empirical studies of quality models
in object-oriented systems. In Advances in Computers,
59:97–166, June 2002.

[7] W. J. Brown, R. C. Malveau, W. H. Brown, H. W.
McCormick III, and T. J. Mowbray. Anti Patterns:
Refactoring Software, Architectures, and Projects in Crisis.
John Wiley and Sons, 1st edition, March 1998.

[8] S. R. Chidamber and C. F. Kemerer. A metrics suite for
object-oriented design. Technical Report E53-315, MIT Sloan
School of Management, December 1993.

[9] R. G. Dromey. Cornering the chimera. In IEEE Software,
13(1):33–43, January 1996.

[10] M. Fowler. Refactoring – Improving the Design of Existing
Code. Addison-Wesley, 1st edition, June 1999.

[11] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns – Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1st edition, 1994.

[12] Y.-G. Guéhéneuc. Ptidej: Promoting patterns with patterns.
In Proceedings of the 1st ECOOP workshop on Building a
System using Patterns. Springer-Verlag, July 2005.

[13] Y.-G. Guéhéneuc, H. Sahraoui, and Farouk Zaidi.

Fingerprinting design patterns. In Proceedings of the 11th

Working Conference on Reverse Engineering, pages 172–181.
IEEE Computer Society Press, November 2004.

[14] R. Harrison, S. J. Counsell, and R. V. Nithi. Experimental
assessment of the effect of inheritance on the maintainability
of object-oriented systems. In Journal of Systems and

Software, 52(2–3):173–179, June 2000.
[15] M. Hitz and B. Montazeri. Measuring coupling and cohesion

in object-oriented systems. In Proceedings of the 3rd

Intermational Symposium on Applied Corporate Computing,
pages 25–27. Texas A & M University, October 1995.

[16] J. Kerievsky. Refactoring to Patterns. Addison-Wesley, 1st

edition, August 2004.
[17] F. Khomh and Y.-G. Guéhéneuc. An empirical study of design

patterns and software quality. Technical Report 1315,
University of Montréal, january 2008.

[18] M. Lorenz and J. Kidd. Object-Oriented Software Metrics: A
Practical Approach. Prentice-Hall, 1st edition, July 1994.

[19] R. C. Martin. Agile Software Development, Principles,
Patterns, and Practices. 2002.

[20] W. B. McNatt and J. M. Bieman. Coupling of design patterns:
Common practices and their benefits. In Proceedings of the

25th Computer Software and Applications Conference, pages
574–579. IEEE Computer Society Press, October 2001.

[21] R. S. Pressman. Software Engineering – A Practitioner’s

Approach. McGraw-Hill Higher Education, 5th edition,
November 2001.

[22] Foutse Khomh and Y.-G. Guéhéneuc. Do design patterns

impact software quality positively? In Proceedings of the 12th

Conference on Software Maintenance and Reengineering.
IEEE Computer Society Press, April 2008. Short Paper.

[23] D. P. Tegarden, S. D. Sheetz, and D. E. Monarchi. A software
complexity model of object-oriented systems. In Decision

Support Systems, 13(3–4):241–262, March 1995.
[24] P. Wendorff. Assessment of design patterns during software

reengineering: Lessons learned from a large commercial
project. In Proceedings of 5th Conference on Software
Maintenance and Reengineering, pages 77–84. IEEE
Computer Society Press, March 2001.

[25] I. H. Witten and E. Frank. Data Mining: Practical Machine

Learning Tools and Techniques with Java Implementations.
Morgan Kaufmann, 1st edition, October 1999.

[26] B. Wydaeghe, K. Verschaeve, B. Michiels, B. V. Damme,
E. Arckens, and V. Jonckers. Building an OMT-editor using
design patterns: An experience report. In proceedings of the

26th Technology of Object-Oriented Languages and Systems
conference, pages 20–32. IEEE Computer Society Press,
August 1998. citeseer.ist.psu.edu/wydaeghe98building.html.

